Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Exp Cell Res ; 437(2): 114028, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582338

RESUMEN

Acute liver injury (ALI) refers to the damage to the liver cells of patients due to drugs, food, and diseases. In this work, we used a network pharmacology approach to analyze the relevant targets and pathways of the active ingredients in Citri Reticulatae Pericarpium (CRP) for the treatment of ALI and conducted systematic validation through in vivo and in vitro experiments. The network pharmacologic results predicted that naringenin (NIN) was the main active component of CRP in the treatment of ALI. GO functional annotation and KEGG pathway enrichment showed that its mechanism may be related to the regulation of PPARA signaling pathway, PPARG signaling pathway, AKT1 signaling pathway, MAPK3 signaling pathway and other signaling pathways. The results of in vivo experiments showed that (NIN) could reduce the liver lesions, liver adipose lesions, hepatocyte injury and apoptosis in mice with APAP-induced ALI, and reduce the oxidative stress damage of mouse liver cells and the inflammation-related factors to regulate ALI. In vitro experiments showed that NIN could inhibit the proliferation, oxidative stress and inflammation of APAP-induced LO2 cells, promote APAP-induced apoptosis of LO2 cells, and regulate the expression of apoptotic genes in acute liver injury. Further studies showed that NIN inhibited APAP-induced ALI mainly by regulating the PPARA-dependent signaling pathway. In conclusion, this study provides a preliminary theoretical basis for the screening of active compounds in CRP for the prevention and treatment of ALI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Flavanonas , Hígado , Humanos , Animales , Ratones , Hígado/metabolismo , Transducción de Señal , Hepatocitos/metabolismo , Inflamación/metabolismo , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
3.
Fitoterapia ; 175: 105899, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38471575

RESUMEN

Limonin is a natural tetracyclic triterpenoid compound in citrus seeds that presents hepatoprotective effects but is often discarded as agricultural waste because of its low content and low solubility. Herein, limonin with high purity (98.11%) from citrus seeds was obtained via purification by high-speed counter-current chromatography (HSCCC) and recrystallization. Limonin-loaded liposomes (Lip-LM) prepared by thin film hydration and high pressure homogenization method to enhance its solubility and hepatoprotective effect on APAP-induced liver injury (AILI). Lip-LM appeared as lipid nanoparticles under a transmission electron microscope, and showed well dispersed nano-scale size (69.04 ± 0.42 nm), high encapsulation efficiency (93.67% ± 2.51%), sustained release, fine stability. Lip-LM also exhibited significantly better hepatoprotective activity on AILI than free limonin in vivo. In summary, Lip-LM might be used as a potential hepatoprotective agent in the form of dietary supplement and provide an effective strategy to improve the potential value of citrus seeds.

4.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37762201

RESUMEN

Postharvest abnormal chilling injury (CI) behavior in papaya (Carica papaya L.) fruit is a rare phenomenon that may be associated with respiratory metabolism. This study thus aimed to investigate the impacts of storage temperatures (1 and 6 °C) on the respiratory metabolism of postharvest papaya and its impact on CI development. Results demonstrated that 1 °C storage reduced the activities of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), citrate synthase (CS), and α-ketoglutarate dehydrogenase (α-KGDH) and regulated the expression of corresponding enzymes in the Embden-Meyerhof-Parnas (EMP) pathway and tricarboxylic acid (TCA) cycle compared with 6 °C storage, resulting in a lower respiration rate of the EMP-TCA pathway and mitigating the development of CI. Meanwhile, lower contents of nicotinamide adenine dinucleotide (hydrogen) (NAD(H)) were observed in papaya fruit stored at 1 °C. Notably, papaya fruit stored at 1 °C maintained higher activity and transcriptional levels of SDH and IDH during the whole storage period. These findings suggest that 1 °C storage reduced the respiration rate of the EMP-TCA pathway by reducing the expression level and activity of related enzymes, which is conducive to the reduction of respiration substrate consumption and finally alleviating the occurrence of CI.

5.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37599623

RESUMEN

Aurones are a subclass of active flavonoids characterized with a scaffold of 2-benzylidene-3(2H)-benzofuranone. This type of chemicals are widely distributed in fruit, vegetable and flower, and contribute to human health. In this review, we summarize the natural aurones isolated from dietary plants. Their positive effects on immunomodulation, antioxidation, cancer prevention as well as maintaining the health status of cardiovascular, nervous system and liver organs are highlighted. The biosynthesis strategies of plant-derived aurones are elaborated to provide solutions for their limited natural abundance. The potential application of natural aurones in food coloration are also discussed. This paper combines the up-to-date information and gives a full image of dietary aurones.

6.
Front Psychiatry ; 14: 1156524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520228

RESUMEN

Background: Evaluating and controlling confounders are necessary when investigating molecular pathogenesis using human postmortem brain tissue. Particularly, tissue pH and RNA integrity number (RIN) are valuable indicators for controlling confounders. However, the influences of these indicators on the expression of each gene in postmortem brain have not been fully investigated. Therefore, we aimed to assess these effects on gene expressions of human brain samples. Methods: We isolated total RNA from occipital lobes of 13 patients with schizophrenia and measured the RIN and tissue pH. Gene expression was analyzed and gene sets affected by tissue pH and RIN were identified. Moreover, we examined the functions of these genes by enrichment analysis and upstream regulator analysis. Results: We identified 2,043 genes (24.7%) whose expressions were highly correlated with pH; 3,004 genes (36.3%) whose expressions were highly correlated with RIN; and 1,293 genes (15.6%) whose expressions were highly correlated with both pH and RIN. Genes commonly affected by tissue pH and RIN were highly associated with energy production and the immune system. In addition, genes uniquely affected by tissue pH were highly associated with the cell cycle, whereas those uniquely affected by RIN were highly associated with RNA processing. Conclusion: The current study elucidated the influence of pH and RIN on gene expression profiling and identified gene sets whose expressions were affected by tissue pH or RIN. These findings would be helpful in the control of confounders for future postmortem brain studies.

7.
Front Psychiatry ; 14: 1104222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415686

RESUMEN

Introduction: Perinatal women tend to have difficulties with sleep along with autonomic characteristics. This study aimed to identify a machine learning algorithm capable of achieving high accuracy in predicting sleep-wake conditions and differentiating between the wake conditions before and after sleep during pregnancy based on heart rate variability (HRV). Methods: Nine HRV indicators (features) and sleep-wake conditions of 154 pregnant women were measured for 1 week, from the 23rd to the 32nd weeks of pregnancy. Ten machine learning and three deep learning methods were applied to predict three types of sleep-wake conditions (wake, shallow sleep, and deep sleep). In addition, the prediction of four conditions, in which the wake conditions before and after sleep were differentiated-shallow sleep, deep sleep, and the two types of wake conditions-was also tested. Results and Discussion: In the test for predicting three types of sleep-wake conditions, most of the algorithms, except for Naïve Bayes, showed higher areas under the curve (AUCs; 0.82-0.88) and accuracy (0.78-0.81). The test using four types of sleep-wake conditions with differentiation between the wake conditions before and after sleep also resulted in successful prediction by the gated recurrent unit with the highest AUC (0.86) and accuracy (0.79). Among the nine features, seven made major contributions to predicting sleep-wake conditions. Among the seven features, "the number of interval differences of successive RR intervals greater than 50 ms (NN50)" and "the proportion dividing NN50 by the total number of RR intervals (pNN50)" were useful to predict sleep-wake conditions unique to pregnancy. These findings suggest alterations in the vagal tone system specific to pregnancy.

8.
Front Pharmacol ; 14: 1096001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180721

RESUMEN

Polymethoxyflavonoids (PMFs), the main bioactive compounds naturally occurring in the pericarp of Citrus reticulata 'Chachi' (CRCP), possess significant antitumor action. However, the action of PMFs in nasopharyngeal carcinoma (NPC) is currently unknown. The present research study was conducted to investigate the inhibitory mechanisms of PMFs from CRCP on NPC growth in vivo and in vitro. In our research, we used high-speed counter-current chromatography (HSCCC) to separate four PMFs (nobiletin (NOB), 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF), tangeretin (TGN), and 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone (5-HPMF)) from CRCP. CCK-8 assay was used to preliminarily screen cell viability following exposure to the four PMFs. Colony formation, Hoechst-33258 staining, transwell, and wound scratch assays were performed to assess the anti-proliferation, invasion, migration, and apoptosis-inducing effects of HMF on NPC cells. NPC tumors in xenograft tumor transplantation experiments were also established to explore the effect of HMF (100 and 150 mg/kg/day) on NPC. The histopathological changes in the treated rats were observed by H&E staining and Ki-67 detection by immunohistochemical techniques. The expressions of P70S6K, p-P70S6K, S6, p-S6, COX-2, p53, and p-p53 were measured by Western blot. The four PMFs were obtained with high purity (>95.0%). The results of the preliminary screening by CCK-8 assay suggested that HMF had the strongest inhibitory effect on NPC cell growth. The results of the colony formation, Hoechst-33258 staining, transwell, and wound scratch assays indicated that HMF had significant anti-proliferation, invasion, migration, and apoptosis-inducing ability in NPC cells. Moreover, HMF suppressed NPC tumor growth in xenograft tumor transplantation experiments. Further investigation suggested that HMF regulated NPC cells proliferation, apoptosis, migration, and invasion by activating AMPK-dependent signaling pathways. In conclusion, HMF-induced AMPK activation inhibited NPC cell growth, invasion, and metastatic potency by downregulating the activation of the mTOR signaling pathway and COX-2 protein levels, as well as enhancing the p53 phosphorylation level. Our study provides a crucial experimental basis for the clinical treatment of NPC, as well as the development and utilization of PMFs from CRCP.

9.
Psychiatry Clin Neurosci ; 77(8): 434-441, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37178325

RESUMEN

AIM: Previous studies based on a relatively limited number of subjects have indicated potential associations between plasma cytokine concentrations in perinatal women and postpartum depression (PPD). This report aimed to examine alterations in cytokine levels during pregnancy and after delivery by measuring nine cytokines in prenatal and postnatal plasma samples in a large cohort. METHODS: A nested, case-control study was conducted using plasma samples from 247 women with PPD (Edinburgh Postnatal Depression Scale: EPDS ≥9) and 243 age-matched control (EPDS ≤2) women from among perinatal women who participated in the Tohoku Medical Megabank three-generation cohort. Concentrations of nine plasma cytokines (IFN-γ, IL-1ß, IL-4, IL-6, IL-10, IL-12p40, IL-12p70, IL-13, and TNF-α) in plasma collected at the time of enrollment during pregnancy and 1 month after delivery were determined using an immunoassay kit. RESULTS: Cross-sectional comparisons of cytokine levels during pregnancy and after delivery indicated that the PPD group maintained significantly lower plasma IL-4 levels during pregnancy and after delivery than the control group, and that plasma IL-4 levels decreased significantly during pregnancy regardless of PPD status. Plasma IL-10 levels were significantly higher during pregnancy than after delivery only among healthy controls, and plasma IL-10 levels were significantly higher in the control group than in the PPD group. Moreover, IFN-γ, IL-6, IL-12p40, and TNF-α levels were significantly lower during pregnancy compared with after delivery regardless of PPD status. CONCLUSIONS: These results suggest a potential protective effect of the anti-inflammatory cytokines IL-4 and IL-10 during pregnancy against the development of PPD.


Asunto(s)
Depresión Posparto , Embarazo , Femenino , Humanos , Interleucina-10 , Subunidad p40 de la Interleucina-12 , Citocinas , Factor de Necrosis Tumoral alfa , Estudios de Casos y Controles , Estudios Transversales , Interleucina-4 , Interleucina-6 , Factores de Riesgo
10.
Small ; 19(33): e2301498, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37093201

RESUMEN

Lithium-carbon dioxide (Li-CO2 ) batteries have attracted much attention due to their high theoretical energy density. However, due to the existance of lithium carbonate and amorphous carbon in the discharge products that are difficult to decompose, the battery shows low coulombic efficiency and poor cycle performance. Here, by adjusting the adsorption of carbon dioxide (CO2 ) on ruthenium (Ru) catalysts surface, this work reports an ultralow charge overpotential and long cycle life Li-CO2 battery that consists of typical lithium metal, ternary molten salt electrolyte (TMSE), and Ru-based cathode. Experimental results show that the Ru catalysts deposited on quartz nanofiber (QF) can suppress the four-electron conversion of CO2 to lithium carbonate (Li2 CO3 ). As a result, the battery shows a long-cycle-life of over 457 cycles at 1.0 A g-1 with a limited capacity of 500 mAh g-1 Ru . Remarkably, a recorded low discharge potential of ≈3.0 V has been achieved after 35 cycles at 0.5 A g-1 , with a charge potential retention of over 99%. Moreover, the battery can operate over 25 A g-1 and recover 96% potential. This battery technology paves the way for designing high-performance rechargeable Li-CO2 batteries with carbon neutrality.

11.
Phytomedicine ; 115: 154836, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37119760

RESUMEN

BACKGROUND: Liver is a vital organ responsible for metabolizing and detoxifying both endogenous and exogenous substances in the body. However, it is susceptible to damage from chemical and natural toxins. The high incidence and mortality rates of liver disease and its associated complications impose a significant economic burden and survival pressure on patients and their families. Various liver diseases exist, including cholestasis, viral and non-viral hepatitis, fatty liver disease, drug-induced liver injury, alcoholic liver injury, and severe end-stage liver diseases such as cirrhosis, hepatocellular carcinoma (HCC), and cholangiocellular carcinoma (CCA). Recent research has shown that flavonoids found in Citri Reticulatae Pericarpium (CRP) have the potential to normalize blood glucose, cholesterol levels, and liver lipid levels. Additionally, these flavonoids exhibit anti-inflammatory properties, prevent oxidation and lipid peroxidation, and reduce liver toxicity, thereby preventing liver injury. Given these promising findings, it is essential to explore the potential of active components in CRP for developing new drugs to treat liver diseases. OBJECTIVE: Recent studies have revealed that flavonoids, including hesperidin (HD), hesperetin (HT), naringenin (NIN), nobiletin (NOB), naringin (NRG), tangerine (TN), and erodcyol (ED), are the primary bioactive components in CRP. These flavonoids exhibit various therapeutic effects on liver injury, including anti-oxidative stress, anti-cytotoxicity, anti-inflammatory, anti-fibrosis, and anti-tumor mechanisms. In this review, we have summarized the research progress on the hepatoprotective effects of HD, HT, NIN, NOB, NRG, TN, ED and limonene (LIM), highlighting their underlying molecular mechanisms. Despite their promising effects, the current clinical application of these active ingredients in CRP has some limitations. Therefore, further studies are needed to explore the full potential of these flavonoids and develop new therapeutic strategies for liver diseases. METHODS: For this review, we conducted a systematic search of three databases (ScienceNet, PubMed, and Science Direct) up to July 2022, using the search terms "CRP active ingredient," "liver injury," and "flavonoids." The search data followed the PRISMA standard. RESULTS: Our findings indicate that flavonoids found in CRP can effectively reduce drug-induced liver injury, alcoholic liver injury, and non-alcoholic liver injury. These therapeutic effects are mainly attributed to the ability of flavonoids to improve liver resistance to oxidative stress and inflammation while normalizing cholesterol and liver lipid levels by exhibiting anti-free radical and anti-lipid peroxidation properties. CONCLUSION: Our review provides new insights into the potential of active components in CRP for preventing and treating liver injury by regulating various molecular targets within different cell signaling pathways. This information can aid in the development of novel therapeutic strategies for liver disease.


Asunto(s)
Carcinoma Hepatocelular , Citrus , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Humanos , Medicamentos Herbarios Chinos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Flavonoides/química , Citrus/química , Antiinflamatorios
12.
Eur J Neurosci ; 57(6): 1018-1032, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36750311

RESUMEN

ß-hydroxybutyrate (BHB) is a major ketone body synthesized mainly in the liver mitochondria and is associated with stress and severity of depression in humans. It is known to alleviate depressive-like behaviors in mouse models of depression. In this study, plasma BHB, ketogenic and glucogenic amino acids selected from the Tohoku Medical Megabank Project Community-Based Cohort Study were analysed and measured using nuclear magnetic resonance spectroscopy. The Center for Epidemiologic Studies Depression Scale (CES-D) was utilized to select adult participants with depressive symptoms (CES-D ≥ 16; n = 5722) and control participants (CES-D < 16; n = 18,150). We observed significantly reduced plasma BHB, leucine, and tryptophan levels in participants with depressive symptoms. Using social defeat stress (SDS) mice models, we found that BHB levels in mice sera increased after acute SDS, but showed no change after chronic SDS, which differed from human plasma results. Furthermore, acute SDS increased mitochondrial BHB levels in the prefrontal cortex at 6 h. In contrast, chronic SDS significantly increased the amount of food intake but reduced hepatic mitochondrial BHB levels in mice. Moreover, gene transcriptions of voltage-dependent anion-selective channel 1 (Vdac1) and monocarboxylic acid transporter 1 (Mct1), major molecules relevant to mitochondrial biogenesis and BHB transporter, significantly decreased in the liver and PFC after chronic SDS exposure. These results provide evidence that hepatic and prefrontal mitochondrial biogenesis plays an important role in BHB synthesis under chronic stress and in humans with depressive symptoms.


Asunto(s)
Aminoácidos , Cuerpos Cetónicos , Humanos , Ratones , Adulto , Animales , Ácido 3-Hidroxibutírico/metabolismo , Estudios de Cohortes , Modelos Animales de Enfermedad
13.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835209

RESUMEN

N-acetylcysteine (NAC) is an antioxidant that prevents tumor necrosis factor (TNF)-α-induced cell death, but it also acts as a pro-oxidant, promoting reactive oxygen species independent apoptosis. Although there is plausible preclinical evidence for the use of NAC in the treatment of psychiatric disorders, deleterious side effects are still of concern. Microglia, key innate immune cells in the brain, play an important role in inflammation in psychiatric disorders. This study aimed to investigate the beneficial and deleterious effects of NAC on microglia and stress-induced behavior abnormalities in mice, and its association with microglial TNF-α and nitric oxide (NO) production. The microglial cell line MG6 was stimulated by Escherichia coli lipopolysaccharide (LPS) using NAC at varying concentrations for 24 h. NAC inhibited LPS-induced TNF-α and NO synthesis, whereas high concentrations (≥30 mM) caused MG6 mortality. Intraperitoneal injections of NAC did not ameliorate stress-induced behavioral abnormalities in mice, but high-doses induced microglial mortality. Furthermore, NAC-induced mortality was alleviated in microglial TNF-α-deficient mice and human primary M2 microglia. Our findings provide ample evidence for the use of NAC as a modulating agent of inflammation in the brain. The risk of side effects from NAC on TNF-α remains unclear and merits further mechanistic investigations.


Asunto(s)
Acetilcisteína , Inflamación , Microglía , Factor de Necrosis Tumoral alfa , Animales , Humanos , Ratones , Acetilcisteína/farmacología , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
14.
Nanotechnology ; 34(16)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36649652

RESUMEN

Solid-state lithium-metal batteries using inorganic solid-state electrolyte (SSE) instead of liquid-electrolyte, especially lithium-oxygen (Li-O2) battery, have attracted much more attention due to their high-energy density and safety. However, the poor interface contact between electrodes and SSEs makes these batteries lose most of their capacity and power during cycling. Here we report that by coating a heterogeneous silicon carbide on lithium metal anode and Li1.5Al0.5Ge1.5P3O12(LAGP)-SSE, a good interface contact is created between the electrode and electrolyte that can effectively reduce the interface impedance and improve the cycle performance of the assembled battery. As a result, the solid-sate Li-O2battery demonstrates a cycle lifespan of ∼78 cycles being at least 3-times higher than the solid-state Li-O2battery without silicon carbide with a capacity limitation of 1000 mAh g-1at 250 mA g-1. The characterization of discharge products indicates a typical two-electron convention of oxygen-to-lithium oxide for the solid-state Li-O2battery system. This work paves a way for developing high-energy long-cycle solid-state lithium-metal battery. The work provides insights into the interface between the Li-metal and SSE to develop high-energy long-cycle all solid-state Li-metal batteries.

15.
Data Brief ; 46: 108862, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36624765

RESUMEN

The transcription profile of microglia related to fear conditioning remains unclear. Here, we used Illumina MouseWG-6v2 microarrays to investigate the gene transcription changes in microglia and peripheral monocytes after contextual fear conditioning of C57BL/6 J mice. Mice were trained with or without a single minimized footshock stimulation (0-s or 2-s, 0.4 mA) and re-exposed to the training context without footshock for three different durations 24 h later: 0 min (FS0), 3 min (FS3), or 30 min (FS30). Whole brain microglia and peripheral monocytes were prepared 24 h after re-exposure using a neural tissue dissociation kit, including non-footshock controls for two re-exposure durations (Con3 and Con30). The data can be valuable for researchers interested in glial cells and neurotransmission studies and are related to the research article "Contextual fear conditioning regulates synapse-related gene transcription in mouse microglia".

16.
Mol Neurobiol ; 60(2): 1083-1098, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36414910

RESUMEN

Schizophrenia presents clinical and biological differences between males and females. This study investigated transcriptional profiles in the dorsolateral prefrontal cortex (DLPFC) using postmortem data from the largest RNA-sequencing (RNA-seq) database on schizophrenic cases and controls. Data for 154 male and 113 female controls and 160 male and 93 female schizophrenic cases were obtained from the CommonMind Consortium. In the RNA-seq database, the principal component analysis showed that sex effects were small in schizophrenia. After we analyzed the impact of sex-specific differences on gene expression, the female group showed more significantly changed genes compared with the male group. Based on the gene ontology analysis, the female sex-specific genes that changed were overrepresented in the mitochondrion, ATP (phosphocreatine and adenosine triphosphate)-, and metal ion-binding relevant biological processes. An ingenuity pathway analysis revealed that the differentially expressed genes related to schizophrenia in the female group were involved in midbrain dopaminergic and γ-aminobutyric acid (GABA)-ergic neurons and microglia. We used methylated DNA-binding domain-sequencing analyses and microarray to investigate the DNA methylation that potentially impacts the sex differences in gene transcription using a maternal immune activation (MIA) murine model. Among the sex-specific positional genes related to schizophrenia in the PFC of female offspring from MIA, the changes in the methylation and transcriptional expression of loci ACSBG1 were validated in the females with schizophrenia in independent postmortem samples by real-time PCR and pyrosequencing. Our results reveal potential genetic risks in the DLPFC for the sex-dependent prevalence and symptomology of schizophrenia.


Asunto(s)
Esquizofrenia , Animales , Femenino , Humanos , Masculino , Ratones , Corteza Prefontal Dorsolateral , Corteza Prefrontal/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Caracteres Sexuales , Transcriptoma/genética
17.
iScience ; 25(12): 105666, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36505921

RESUMEN

Examining plasma metabolic profiling during pregnancy and postpartum could help clinicians understand the risk factors for postpartum depression (PPD) development. This analysis targeted paired plasma metabolites in mid-late gestational and 1 month postpartum periods in women with (n = 209) or without (n = 222) PPD. Gas chromatogram-mass spectrometry was used to analyze plasma metabolites at these two time points. Among the 170 objected plasma metabolites, principal component analysis distinguished pregnancy and postpartum metabolites but failed to discriminate women with and without PPD. Compared to women without PPD, those with PPD exhibited 37 metabolites with disparate changes during pregnancy and the 1-month postpartum period and an enriched citrate cycle. Machine learning and multivariate statistical analysis identified two or three compounds that could be potential biomarkers for PPD prediction during pregnancy. Our findings suggest metabolic disturbances in women with depression and may help to elucidate metabolic processes associated with PPD development.

18.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36432355

RESUMEN

Aqueous rechargeable zinc (Zn)−air batteries have recently attracted extensive research interest due to their low cost, environmental benignity, safety, and high energy density. However, the sluggish kinetics of oxygen (O2) evolution reaction (OER) and the oxygen reduction reaction (ORR) of cathode catalysts in the batteries result in the high over-potential that impedes the practical application of Zn−air batteries. Here, we report a stable rechargeable aqueous Zn−air battery by use of a heterogeneous two-dimensional molybdenum sulfide (2D MoS2) cathode catalyst that consists of a heterogeneous interface and defects-embedded active edge sites. Compared to commercial Pt/C-RuO2, the low cost MoS2 cathode catalyst shows decent oxygen evolution and acceptable oxygen reduction catalytic activity. The assembled aqueous Zn−air battery using hybrid MoS2 catalysts demonstrates a specific capacity of 330 mAh g−1 and a durability of 500 cycles (~180 h) at 0.5 mA cm−2. In particular, the hybrid MoS2 catalysts outperform commercial Pt/C in the practically meaningful high-current region (>5 mA cm−2). This work paves the way for research on improving the performance of aqueous Zn−air batteries by constructing their own heterogeneous surfaces or interfaces instead of constructing bifunctional catalysts by compounding other materials.

19.
Angew Chem Int Ed Engl ; 61(48): e202212079, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36195828

RESUMEN

An approach allowing remote editing of stacked aromatic assemblies for heteroannular C-H functionalization would represent a transformative chemical toolbox that may make the diversification of complex molecules in a straightforward manner. However, such a C-H activation is usually less kinetically and thermodynamically favorable than homoannular ortho C-H activation and remains a fundamental challenge. Herein we disclose an engineer's approach, using a transient ligand as an interim bridge between two aryl rings (analogues to mountaintops) to anchor the metal center on the remote heteroannular C-H bond. As a proof-of-concept, we present the palladium-catalyzed heteroannular C-H olefination of stacked aromatic assemblies with olefins and allylation with vinyl acetates using L-tert-leucine acid as a transient ligand. Mechanistic investigations suggest an unusual olefin coordination-promoted interannular palladium migration process determinative for reversal of the site-selectivity.

20.
Brain Res Bull ; 189: 57-68, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35987296

RESUMEN

Microglia have been suggested to be involved in the underlying mechanism of conditional fear memory formation by regulating inflammatory cytokines. However, the mechanism linking microglia and neuronal activity related to fear conditioning remains unclear. This study characterized the transcription profile of microglia in a fear memory conditional mouse model. Compared with those in control mice microglia, the most significantly induced genes were synapse-related, whereas immune-related genes were reduced due to fear memory consolidation. Whilst the increased expression of synapse-related genes was reversed after fear memory extinction, that of immunological genes was not, strongly suggesting a connection between microglia, neurons, and a dysregulated immune response following contextual fear conditioning. Furthermore, in the hippocampal microglia, we found that the expression of neurotransmitter release regulators, γ-aminobutyric acid (GABA) receptor GABRB3 and synapsin 1/2, increased under fear memory consolidation and restored (decreased) after extinction. In addition, compared with the transcription profile in peripheral monocytes, few overlapping genes were not enriched in biological processes. Taken together, the identified conditional fear stress-induced changes in mouse microglial transcription profiles suggest that microglia-neuron communication mediates contextual fear conditioning.


Asunto(s)
Microglía , Sinapsinas , Animales , Citocinas/metabolismo , Miedo/fisiología , Hipocampo/metabolismo , Ratones , Microglía/metabolismo , Neurotransmisores/metabolismo , Sinapsis/metabolismo , Sinapsinas/metabolismo , Transcripción Genética , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...